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Staphylococcus pseudintermedius is a coagulase-positive species that colonizes the nares and anal mucosa of healthy dogs and
cats. Human infections with S. pseudintermedius range in severity from bite wounds and rhinosinusitis to endocarditis; histori-
cally, these infections were thought to be uncommon, but new laboratory methods suggest that their true incidence is underre-
ported. Oxacillin and cefoxitin disk and MIC tests were evaluated for the detection of mecA- or mecC-mediated methicillin resis-
tance in 115 human and animal isolates of the Staphylococcus intermedius group (SIG), including 111 Staphylococcus
pseudintermediusand 4 Staphylococcus delphini isolates, 37 of which were mecA positive. The disk and MIC breakpoints evalu-
ated included the Clinical and Laboratory Standards Institute (CLSI) M100-S25 Staphylococcus aureus/Staphylococcus lug-
dunensis oxacillin MIC breakpoints and cefoxitin disk and MIC breakpoints, the CLSI M100-S25 coagulase-negative Staphylo-
coccus (CoNS) oxacillin MIC breakpoint and cefoxitin disk breakpoint, the CLSI VET01-S2 S. pseudintermedius oxacillin MIC
and disk breakpoints, and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) S. pseudintermedius ce-
foxitin disk breakpoint. The oxacillin results interpreted by the VET01-S2 (disk and MIC) and M100-S25 CoNS (MIC) break-
points agreed with the results of mecA/mecC PCR for all isolates, with the exception of one false-resistant result (1.3% of mecA/
mecC PCR-negative isolates). In contrast, cefoxitin tests performed poorly, ranging from 3 to 89% false susceptibility (very
major errors) and 0 to 48% false resistance (major errors). BD Phoenix, bioMérieux Vitek 2, and Beckman Coulter MicroScan
commercial automated susceptibility test panel oxacillin MIC results were also evaluated and demonstrated >95% categorical
agreement with mecA/mecC PCR results if interpreted by using the M100-S25 CoNS breakpoint. The Alere penicillin-binding
protein 2a test accurately detected all mecA-positive isolates, although for four isolates, cefoxitin induction was required prior to
testing. These data demonstrate that the cefoxitin surrogate test does not reliably detect the presence of mecA in S. pseudinter-
medius isolates and that laboratories should perform oxacillin disk or MIC tests of these isolates when they are encountered.

Staphylococcus pseudintermedius is a coagulase-positive, hemo-
lytic species that colonizes the nares and anal mucosa of

healthy dogs and cats (1–4). Clinically, S. pseudintermedius is the
most common cause of canine pyoderma and occasionally causes
urinary tract and joint infections in dogs and cats (5–8). Pheno-
typically, S. pseudintermedius is difficult to differentiate from
Staphylococcus intermedius and Staphylococcus delphini, which are
also coagulase-positive veterinary staphylococci. Collectively,
these three species are referred to as the S. intermedius group
(SIG). Differentiation of the members of this group requires mo-
lecular analysis (9), although matrix-assisted laser desorption ion-
ization-time of flight mass spectrometry (MALDI-TOF MS) has
also shown promise for reliable differentiation of the members of
the SIG (4, 10–13).

Human infections caused by S. pseudintermedius are reported
sporadically and range in severity from bite wounds and rhinosi-
nusitis to endocarditis, (14–17). However, infections caused by S.
pseudintermedius in humans are likely underreported (18), as clin-
ical laboratories may inaccurately report these isolates as Staphy-
lococcus aureus on the basis of positive coagulase or staphylococcal
latex agglutination reactions (19). Recognition of phenotypic
traits atypical of S. aureus, such as off-white colony color and the
presence of double-zone beta-hemolysis on sheep blood agar

(SBA) with appropriate follow-up testing, is required for accurate
identification. The introduction of MALDI-TOF MS systems in
many clinical laboratories for identification of bacteria may result
in increased reporting of S. pseudintermedius, as has been noted by
our laboratories (R.M.H. and C.-A.D.B., personal observations).

Unlike human isolates of S. aureus, veterinary isolates of SIG
are typically susceptible to methicillin (20). However, the inci-
dence of methicillin-resistant S. pseudintermedius (MRSP) in dogs
has increased, presenting a major treatment challenge for veteri-
narians (21). In face of this emerging resistance, the Clinical and

Received 25 October 2015 Returned for modification 12 November 2015
Accepted 19 November 2015

Accepted manuscript posted online 25 November 2015

Citation Wu MT, Burnham C-AD, Westblade LF, Dien Bard J, Lawhon SD, Wallace
MA, Stanley T, Burd E, Hindler J, Humphries RM. 2016. Evaluation of oxacillin and
cefoxitin disk and MIC breakpoints for prediction of methicillin resistance in
human and veterinary isolates of Staphylococcus intermedius group. J Clin
Microbiol 54:535–542. doi:10.1128/JCM.02864-15.

Editor: S. S. Richter

Address correspondence to R. M. Humphries, rhumphries@mednet.ucla.edu.

Copyright © 2016, American Society for Microbiology. All Rights Reserved.

crossmark

March 2016 Volume 54 Number 3 jcm.asm.org 535Journal of Clinical Microbiology

http://orcid.org/0000-0002-1137-840X
http://orcid.org/0000-0001-9154-8909
http://dx.doi.org/10.1128/JCM.02864-15
http://crossmark.crossref.org/dialog/?doi=10.1128/JCM.02864-15&domain=pdf&date_stamp=2015-11-25
http://jcm.asm.org


Laboratory Standards Institute (CLSI) veterinary group revised
recommendations for the detection of methicillin resistance in
these isolates (22–24) and now stipulates that oxacillin disk or
MIC testing be performed and interpreted by using S. pseudinter-
medius-specific breakpoints (Table 1). These guidelines are found
in the CLSI VET01-S2 document (25).

With the close contact between humans and companion ani-
mals, zoonotic transfer of MRSP to humans is inevitable. Few, if
any, clinical laboratories in the United States routinely access the
CLSI VET01-S2 document and rely on the CLSI M100-S25 stan-
dard for instructions on how to perform susceptibility tests and
interpret their results for human isolates. This fact, coupled with
frequent misidentification of S. pseudintermedius as S. aureus, has
resulted in variable S. pseudintermedius isolate antimicrobial sus-
ceptibility testing and interpretation practices across clinical lab-
oratories. Moreover, no automated susceptibility test system is
cleared by the U.S. Food and Drug Administration (FDA) for the
testing of human isolates of S. pseudintermedius, and the ability of
these systems to accurately detect MRSP is unknown.

The objective of this study was to evaluate cefoxitin and oxa-
cillin disk zones and MICs, compared to mecA and mecC PCR, for
a collection of 115 human and veterinary SIG isolates. Disk zones
and MICs were interpreted by using the VET01-S2 oxacillin
breakpoints, the European Committee on Antimicrobial Suscep-
tibility Testing (EUCAST) cefoxitin breakpoints for S. pseudinter-
medius (26), and the existing S. aureus and coagulase-negative
Staphylococcus (CoNS) oxacillin and cefoxitin breakpoints in
M100-S25. The results of these data were presented to the CLSI
Antimicrobial Susceptibility Testing Subcommittee in July 2015,
which led to the addition of S. pseudintermedius-specific interpre-
tative criteria for oxacillin disk and MIC data to the forthcoming
M100-S26 document. In addition, three commercial automated
susceptibility test systems used in human clinical laboratories
were evaluated, along with a penicillin-binding protein 2a
(PBP2a) test, for the detection of MRSP.

MATERIALS AND METHODS
Bacterial isolates. A total of 115 isolates were included in this study.
Human isolates (n � 45) were collected from the following geographically
distinct academic medical centers: the Ronald Reagan UCLA Medical
Center, Los Angeles, CA (n � 12); the Emory University School of Med-
icine, Atlanta, GA (n � 4); Washington University, St. Louis, MO (n �
12); the Centers for Disease Control and Prevention, Atlanta, GA (n � 7);
the University of Iowa Hospital and Clinics, Iowa City, IA (n � 2); and the

R. M. Alden Research Laboratory, Culver City, CA (n � 8). Veterinary
isolates (n � 70) were obtained from the Texas A&M School of Veterinary
Medicine. Identification of isolates was performed according to the stan-
dard operating procedures of the submitting institution and confirmed at
a central laboratory by a nucleic acid-based assay (9).

Antimicrobial susceptibility testing. Isolates were stored at �70°C in
brucella broth plus 15% glycerol (BD, Sparks, MD) and subcultured twice
on SBA prior to testing. Well-isolated colonies were used to prepare a
suspension equivalent to a 0.5 McFarland standard. This suspension was
then used to inoculate Mueller-Hinton agar (BD) for disk diffusion (DD),
broth microdilution (BMD) panels and automated susceptibility cards/
panels according to the CLSI (DD and BMD) or the manufacturer’s in-
structions. BMD was performed in cation-adjusted Mueller-Hinton
broth (Difco, BD) on panels prepared at UCLA according to CLSI stan-
dards (27). Oxacillin was tested at 2-fold dilutions spanning a concentra-
tion range of 0.25 to 16 �g/ml, whereas cefoxitin was tested at a single
concentration of 4 �g/ml in duplicate. For DD tests, disks containing 1 �g
oxacillin or 30 �g cefoxitin (BBL, BD) were used. Both BMD and DD tests
were incubated at 35°C in ambient air for 24 h, and results were examined
visually by two independent readers.

Automated antimicrobial susceptibility testing was performed with
the Phoenix PMIC-8 panel (BD Diagnostics Systems, Franklin Lakes, NJ),
the Vitek 2 AST-GP71 card (bioMérieux, Inc., Durham, NC), and the
MicroScan PM29 panel (Beckman Coulter, Inc., Brea, CA) at the Chil-
dren’s Hospital of Los Angeles, UCLA, and Children’s Healthcare of At-
lanta, respectively, in accordance with the manufacturer’s specifications.
Quality control was done by testing S. aureus ATCC 25923 (DD), S. aureus
ATCC 29213 (BMD), S. aureus ATCC BAA-976, S. aureus ATCC BAA-
977, and S. aureus ATCC BAA-1026 for the Vitek 2 card; S. aureus ATCC
29213, S. aureus ATCC 43300, and S. aureus BAA-977 for the MicroScan
panel; and S. aureus ATCC 29213 and S. aureus BAA-977 for the Phoenix
panel.

mecA and mecC detection, SCCmec typing, and repetitive-sequence
PCR. Isolates were grown on 5% sheep blood agar (Hardy Diagnostics,
Santa Maria, CA), and DNA was extracted with the BiOstic Bacteremia
DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA). A multiplex PCR
to detect and differentiate mecA and mecC (mecALGA251) was performed
by using a modification of a previously described method (36). A PCR
with primers mecCF (5=-GAAAAAAAGGCTTAGAACGCCTC-3=),
mecCR (5=-GAAGATCTTTTCCGTTTTCAGC-3=), mecAP4 (5=-TCCA
GATTACAACTTCACCAGG-3=), and mecAP7 (5=-CCACTTCATATCT
TGTAACG-3=) was performed with Ready-To-Go PCR beads (GE
Healthcare). PCR products were visualized on a 1.5% agarose gel. Known
mecA- and mecC-positive MRSA strains USA300 and 72796, respectively,
were used as controls.

A multiplex PCR to detect and differentiate SCCmec types I to V was
also performed on all isolates by a method described previously (28). To

TABLE 1 Breakpoints evaluated for prediction of S. pseudintermedius methicillin resistance

Breakpoint standard

Oxacillin breakpoint Cefoxitin breakpoint

Disk (mm) MIC (�g/ml) Disk (mm) MIC (�g/ml)

Sa Rb S R S R S R

CLSI M100-S25 S. aureus/S.
lugdunensis

NAc NA �2 �4 �22 �21 �4 �8

CLSI M100-S25 CoNS NA NA �0.25 �0.5 �25 �24 NA NA
CLSI VET01-S2 S.

pseudintermedius
�18 �17 �0.25 �0.5 NA NA NA NA

EUCAST S.
pseudintermedius

NA NA NA NA �35 �35 NA NA

a S, susceptible.
b R, resistant.
c NA, not applicable.
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analyze the phylogenetic relatedness of the isolates used in this study,
repetitive-sequence PCR (rep-PCR) was performed as previously de-
scribed (29, 30). The banding patterns obtained on a virtual gel were
compared to determine the similarity index. Isolates with a similarity
index of �95% were considered to be identical. For analysis, isolates that
clustered together were given similar letter designations (A to F) to indi-
cate similarity.

PBP2a test. The Alere PBP2a Culture Colony Test (Alere Inc., Scar-
borough, ME) was used to test colonies grown for 24 h according to the
manufacturer’s instructions for S. aureus. All 115 isolates were tested for
noninduced and induced PBP2a expression. Colonies from the same plate
used to prepare inoculums for cefoxitin and oxacillin DD, as well as BMD
susceptibility testing, were used for the noninduced PBP2a test. Bacteria
from the edge of the cefoxitin zone of growth inhibition were harvested
and used for the induced PBP2a tests. Quality control was done with the S.
aureus ATCC 43300 (positive control) and ATCC 25923 (negative con-
trol) strains for each new lot of PBP2a tests.

Data analysis. MIC and disk results were interpreted by using the
following breakpoints: (i) CLSI VET01-S2 S. pseudintermedius oxacillin
MIC and disk, (ii) CLSI M100-S25 S. aureus/S. lugdunensis oxacillin MIC,
(iii) CLSI M100-S25 S. aureus/S. lugdunensis cefoxitin MIC and disk, (iv)
CLSI M100-S25 CoNS oxacillin MIC, (v) CLSI M100-S25 CoNS cefoxitin
MIC and disk, and (vi) EUCAST S. pseudintermedius cefoxitin disk (Table
1). Categorical agreement (CA), major errors (MEs), and very MEs
(VMEs) were calculated as described by Clark et al. (31). CA was defined
by using the results of the mecA/mecC PCR. MEs were defined as findings
that isolates were resistant to oxacillin or cefoxitin but negative for mecA
and mecC by PCR. The ME rate was calculated by using the number of SIG
isolates negative for mecA and mecC by PCR as the denominator. VMEs
were defined as findings that isolates were susceptible to oxacillin or ce-
foxitin but positive for mecA or mecC by PCR. The VME rate was calcu-
lated by using the number of SIG isolates positive for mecA and mecC by
PCR as the denominator.

Discrepant-result resolution. Isolates with an ME or VME result
compared to the gold standard (mecA/mecC PCR) were retested by sub-
culturing a new culture from the frozen stock and testing it by both the
method that generated the error and the reference method in parallel.

RESULTS
Molecular studies. One hundred fifteen SIG isolates were in-
cluded in this study, which were further identified as 111 S. pseud-
intermedius and 4 S. delphini isolates. Forty-five S. pseudinterme-
dius isolates were from human, 56 were from canine, 7 were from
feline, and 2 were from avian specimens, and 1 was from a porcine
specimen (Table 2). The S. delphini isolates were from avian (n �

1) and equine (n � 3) specimens. mecA was detected in 37/115
(32.2%) isolates, all S. pseudintermedius, including 4/45 (8.9%)
human and 33/64 (51.6%) veterinary isolates. mecC was not de-
tected in any isolate in this study.

SCCmec typing was performed for all isolates with a multiplex
PCR assay that detects and differentiates SCCmec types I to V. As
shown in Table 2, types III (n � 9), IV (n � 10 isolates), and V
(n � 8 isolates) were identified and found only in mecA-positive
isolates (i.e., no mecA dropout events were detected). Among
the human isolates, only the traditional community-associated
SCCmec types IV and V were identified (Table 2), whereas the
veterinary isolates included types III, IV, and V, as well as seven
isolates that were not typeable by this SCCmec assay. The iso-
lates clustered into six groups by rep-PCR, including 22 in group A
(10 human, 12 veterinary), 1 in group B (veterinary), 2 in group C
(veterinary), 4 in group D (2 human, 2 veterinary), 2 in group E (1
human, 1 veterinary), and 84 in group F (32 human and 52 veter-
inary). There was no clear division by rep-PCR of isolates from
human, avian, equine, canine, or feline specimens or by the geo-
graphic locations at which the isolates were recovered.

Cefoxitin and oxacillin DD and BMD. A clear division be-
tween oxacillin MICs was found between mecA-positive and -neg-
ative isolates—MICs were �0.5 �g/ml for all mecA-positive iso-
lates and �0.25 �g/ml for all mecA-negative isolates but one (Fig.
1). Similarly, oxacillin zones of �17 mm were observed for all
mecA-positive isolates, and all mecA-negative isolates but one had
oxacillin zones of �18 mm (Fig. 2). The outlier isolate was the
same for both disk and MIC tests, for which the measured oxacil-
lin zone was 13 mm and the MIC was 1 �g/ml. These results, along
with the mecA and mecC PCR results, were confirmed in duplicate
for this isolate. In contrast to the oxacillin test results, no clear
division in cefoxitin zones was observed between mecA-positive
and -negative isolates (Fig. 3) and only 4/37 (10.8%) mecA-posi-
tive isolates grew at 4 �g/ml cefoxitin (data not shown).

Categorical interpretation of the disk and MIC results, com-
pared to mecA PCR assay results, was done by using six break-
points, and the results are presented in Table 3. With the cefoxitin
CLSI M100-S25 S. aureus/S. lugdunensis breakpoints, 28/37 mecA-
positive isolates were interpreted as susceptible by disk (i.e., 75.7%
VMEs) and 33/37 were interpreted as susceptible by MIC (89.1%
VMEs, Table 3). Among the mecA-positive isolates for which

TABLE 2 Summary of study isolates

Institute (state of isolate origin)
No. of
isolates Source(s) Specimen source(s)

No. of mecA�

isolates
SCCmec type (no. of
isolates)

Rep-PCR clonal
lineage(s)a

UCLA (CA) 12 Human Blood, ethmoid sinus drainage,
wound, ear, skin, abscess

3 IV (2), V (1) A, D, F

R. M. Alden Research Laboratory
(CA)

8 Human Blood, dog bites, cat bites,
wounds

0 None detected F

Washington University (MO) 12 Human Wounds 1 V (1) F
Emory University School of Medicine

(GA)
4 Human Wounds 0 Not detected A, D, E, F

University of Iowa (IA) 2 Human Unknown 0 Not detected A, F
CDCa 7 Human Blood, wound, endotracheal

aspirate
0 Not detected A, E, F

Texas A&Ma 70 Canine, feline,
equine,
porcine

Pyoderma 33 III (9), IV (8), V (9) A, B, C, D, E, F

a The state from which the isolate was acquired was unavailable.
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VMEs were observed, cefoxitin zones ranged from 22 to 38 mm
(Fig. 3) and MICs were �4 �g/ml. All mecA-negative isolates were
susceptible to cefoxitin by both disk and MIC tests, yielding 0%
MEs (Table 3). When the data were interpreted by the CLSI M100-

S25 S. aureus/S. lugdunensis oxacillin MIC breakpoint, 8/37 mecA-
positive isolates were susceptible to oxacillin by MIC (21.6%
VMEs). All eight VMEs were obtained with isolates with measured
oxacillin MICs of 1 to 2 �g/ml, just below or at the susceptibility

FIG 1 Distribution of oxacillin MICs determined by BMD for 115 isolates of S. pseudintermedius isolates of human and animal origins.

FIG 2 Distribution of oxacillin growth inhibition zone diameters for 115 isolates of S. pseudintermedius isolates of human and animal origins.
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breakpoint of �2 �g/ml (Fig. 1). In contrast, 78/78 mecA-negative
isolates were susceptible to oxacillin (i.e., 0% MEs) (Table 3). Re-
peat testing confirmed all VMEs, and no trend in SCCmec type or
rep-PCR pattern was observed for isolates that yielded VMEs for
either oxacillin or cefoxitin (data not shown).

Many laboratories routinely test both oxacillin and cefoxitin
MICs for S. aureus isolates and report an isolate as oxacillin resis-
tant if it is resistant to either oxacillin or cefoxitin. Therefore, we
evaluated if this combined strategy could correctly identify MRSP,
despite VMEs observed for oxacillin and cefoxitin MICs individ-
ually. Using the M100-S25 S. aureus/S. lugdunensis oxacillin and

cefoxitin MIC breakpoints, MICs indicating susceptibility to both
oxacillin and cefoxitin were observed for 7 (18.9%) of 37 mecA-
positive isolates.

Disk and MIC data interpreted by the CLSI M100-S25 break-
points for CoNS yielded 11/37 mecA-positive isolates interpreted
as susceptible by cefoxitin disk (29.7% VMEs) and 0/78 mecA-
negative isolates interpreted as resistant (0% MEs, Table 3 and Fig.
3). There are no cefoxitin MIC breakpoints for CoNS. The M100-
S25 CoNS oxacillin MIC breakpoints are the same as the CLSI
VET01-S2 S. pseudintermedius oxacillin MIC breakpoints (Table
1). Oxacillin MICs were interpreted as indicating resistance for

FIG 3 Distribution of cefoxitin growth inhibition zone diameters for 115 S. pseudintermedius isolates of human and animal origins.

TABLE 3 Phenotypic susceptibility test agreement with mecA PCR results for 115 S. pseudintermedius isolates evaluated in this study

Phenotypic test and breakpoint standard
Criterion for
resistance

% CA with mecA
PCR result No. (%) of VMEs No. (%) of MEs

Cefoxitin DD
CLSI M100 S25 S. aureus/S. lugdunensis �21 mm 75.7 28 (75.7) 0 (0.0)
CLSI M100 S25 CoNS �24 mm 90.4 11 (29.7) 0 (0.0)
EUCAST S. pseudintermedius �35 mm 57.4 1 (2.7) 48 (61.5)

Cefoxitin MIC, CLSI M100 S25 S. aureus/S.
lugdunensis

�4 �g/ml 71.3 33 (89.2) 0 (0.0)

Oxacillin MIC
CLSI M100 S25 S. aureus/S. lugdunensis �4 �g/ml 93.0 8 (21.6) 0 (0.0)
CLSI M100 S25 CoNS/CLSI VET01 S2 S.

pseudintermedius
�0.5 �g/ml 99.1 0 (0) 1 (1.3)

Oxacillin DD, CLSI VET01 S2 S. pseudintermedius �17 mm 99.1 0 (0) 1 (1.3)
PBP2a uninduced, NAa Positive 96.5 4 (10.8) 0 (0.0)
PBP2a induced, NA Positive 100 0 (0.0) 0 (0.0)
a NA, not applicable.
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37/37 mecA-positive isolates by these breakpoints (0% VMEs) and
susceptibility for 77/78 mecA-negative isolates (i.e., 1.3% MEs)
(Table 3 and Fig. 1). The VET01-S2 document also includes oxa-
cillin disk breakpoints for S. pseudintermedius, whereas oxacillin
disk testing is no longer recommended for human isolates of
staphylococci. Oxacillin disk test results, interpreted by the
VET01-S2 breakpoint, indicated resistance for 37/37 mecA isolates
(0% VMEs) and susceptibility for 77/78 mecA-negative isolates
(1.3% MEs). This ME was observed for the same mecA-negative
isolate that was oxacillin resistant by MIC (Fig. 2).

EUCAST cefoxitin disk breakpoints for S. pseudintermedius
(Table 1) were evaluated. One of 37 mecA-positive isolates was
interpreted as susceptible (2.7% VMEs). This isolate had a mea-
sured cefoxitin zone of 38 mm, which was reproduced twice. In
contrast, 48/78 mecA-negative isolates were resistant to cefoxitin
by the EUCAST disk breakpoint, a 61.5% ME rate.

Performance comparison of automated susceptibility test
systems. The performance of three commercial, automated sus-
ceptibility test systems, the BD Phoenix, bioMérieux Vitek 2, and
Beckman Coulter MicroScan, was assessed. The test panels, MIC
ranges, and performance compared to mecA PCR are summarized
in Table 4. Notably, 0/37 mecA-positive isolates had a cefoxitin
MIC of �4 �g/ml—which represents a 100% cefoxitin VME rate
for all three antimicrobial susceptibility test systems (not shown).
Given this poor performance, only oxacillin MICs were evaluated,
and they were interpreted manually by using the CLSI M100-S25
S. aureus/S. lugdunensis and M100-S25 CoNS/VET01-S2 S. pseud-
intermedius oxacillin MIC breakpoints. When interpreted by the
S. aureus/S. lugdunensis oxacillin breakpoint, 11 (29.7%), 8
(21.6%), and 5 (13.5%) VMEs were obtained with the Phoenix,
Vitek 2, and MicroScan systems, respectively. No MEs were ob-
served. When evaluated by the M100-S25 CoNS/VET01-S2 S.
pseudintermedius breakpoint, 4 (10.8%), 1 (2.7%), and 0 (0.0%)
VMEs were obtained with the Phoenix, Vitek 2, and MicroScan
systems, respectively. When these isolates were retested, the VME
obtained with the Vitek 2 system was resolved (i.e., the MIC of 0.5
�g/ml was �0.25 �g/ml on retesting) and all of the VMEs ob-
tained with the Phoenix system were reproduced. Two of the
Phoenix VMEs were obtained with isolates that also had lower
MICs in the other commercial test systems. One, a canine isolate,
had an oxacillin MIC of 0.5 �g/ml in the Vitek 2 system and 1
�g/ml in the MicroScan system, and the other, a porcine isolate,
had oxacillin MICs of 0.5 and 1 �g/ml in those systems, respec-
tively. Notably, all four isolates had oxacillin MICs of �16 �g/ml
by the BMD method. One ME (1.3%) was observed when the
M100-S25 CoNS/VET01-S2 S. pseudintermedius breakpoint was

used in all three systems, for the same canine isolate that yielded a
ME by the BMD and DD methods. One growth failure was ob-
served, for a mecA-positive isolate, in the Vitek 2 system. This was
confirmed by repeat testing. The overall CA levels when using the
M100-S25 CoNS/VET01-S2 oxacillin S. pseudintermedius break-
point were 95.7, 98.3, and 99.1%, for the Phoenix, Vitek 2, and
MicroScan systems, respectively.

PBP2a test. The Alere PBP2a test, when performed with colo-
nies from the edge of the cefoxitin zone, was 100% sensitive and
100% specific, compared to the mecA PCR result. In contrast, if it
was performed uninduced, following the package insert instruc-
tions for S. aureus, four mecA-positive isolates were repeatedly
negative for PBP2a (n � 3 replicates), yielding a sensitivity of
89.2% and a specificity of 100%. No correlation was found be-
tween isolates that required induction and oxacillin MIC or ce-
foxitin disk zones (data not shown).

DISCUSSION

Clinical laboratories almost universally rely on the use of the sur-
rogate agent cefoxitin to detect mecA-mediated beta-lactam resis-
tance when testing human isolates of staphylococci (27). The ce-
foxitin disk test has been shown in several studies to be the most
reliable predictor of the presence of mecA in both S. aureus and
CoNS. However, the present study demonstrates that this test falls
short for SIG isolates of both human and veterinary origins. Re-
gardless of the breakpoint employed, cefoxitin VME rates com-
pared to mecA PCR were unacceptably high and ranged from 3 to
89% (Table 3). On the low end of this range was the EUCAST
cefoxitin disk test, with 3% VMEs observed among the 37 mecA-
positive isolates tested. However, we obtained a very high ME rate
(62.8%) when using this breakpoint, further demonstrating the
limitation of this surrogate agent for SIG. Indeed, we were unable
to find a clear breakpoint in cefoxitin zones that could differenti-
ate mecA-positive from mecA-negative isolates (Fig. 3). No corre-
lation between SCCmec type and/or rep-PCR clonal type and per-
formance of cefoxitin tests was identified, suggesting that our
findings were not related to a specific lineage of this organism
group. It should be noted that we incubated all tests for 24 h,
which is longer than the recommended 16- to 20-h incubation
endorsed by EUCAST (26)—we cannot exclude the possibility
that the additional 4 h of incubation contributed to some MEs.
Nonetheless, it is clear that neither the cefoxitin nor the oxacillin
test will adequately detect mecA-mediated resistance in all species
of Staphylococcus— both VMEs and MEs (32) have been docu-
mented. In particular, the cefoxitin disk test performs poorly with
S. saprophyticus (32) and S. simulans (33) when results are inter-

TABLE 4 Performance of commercial automated systems when testing 115 isolates of S. pseudintermedius for oxacillin susceptibilitya

System/panel (concn range [�g/ml])

CLSI M100-S25 S. aureus/S. lugdunensis oxacillin
breakpoint (R,b �4 �g/ml)

CLSI M100-S25 CoNS oxacillin breakpoint (R, �0.5
�g/ml)

CA (%) No. (%) of VMEs No. (%) of MEs CA (%) No. (%) of VMEs No. (%) of MEs

BD Phoenix PMIC-8 (0.25, 0.5, 1, 2) 90.4 11 (29.7) 0 (0.0) 95.7 4 (10.8) 1 (1.3)
bioMérieux Vitek2 AST-GP71 (0.5, 1, 2)c 93.0 8 (21.6) 0 (0.0) 98.3 1 (2.7) 1 (1.3)
Beckman Coulter MicroScan Pos MIC 29

(0.25, 0.5, 1, 2)
95.7 5 (13.5) 0 (0.0) 99.1 0 (0.0) 1 (1.3)

a Oxacillin MICs were interpreted by using the CLSI M100-S25 S. aureus/S. lugdunensis or CoNS breakpoints; the reference is a mecA PCR result. Results obtained with all three
systems are currently for research use only.
b R, resistance.
c One isolate had growth failure (repeated twice) in the AST-GP71 panel.
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preted by using the CLSI CoNS breakpoints. The mechanisms
behind these discrepancies are unclear, but the mechanism of be-
ta-lactam resistance in the staphylococci is complex, involving the
participation of both acquired and native PBP-encoding genes;
therefore, differences in phenotypic resistance among the various
staphylococcal species are not unanticipated (34).

Oxacillin MIC and disk testing, when interpreted by the
VET01-S2 S. pseudintermedius breakpoints, was most accurate at
identifying mecA among the SIG isolates evaluated. All 37 mecA-
positive isolates were correctly interpreted as oxacillin resistant,
and 77/78 mecA/mecC-negative isolates were interpreted as oxa-
cillin susceptible. Similar to our findings, Bemis and colleagues
found 29.1% VMEs and 0% MEs for the cefoxitin disk test among
a collection of 380 veterinary isolates of S. pseudintermedius (88
mecA positive) (22). This laboratory also tested S. pseudinterme-
dius with the oxacillin disk test interpreted by the CLSI historical
CoNS oxacillin breakpoint that was last published in 2008 in CLSI
M100-S18 (and is the same as the current CLSI VET01-S2 S.
pseudintermedius disk breakpoint). Among 666 isolates (230 mecA
positive), they found 0.9% VMEs and 0.6% MEs. Similarly, when
Schissler and colleagues evaluated a collection of 30 mecA-positive
veterinary isolates of S. pseudintermedius, only 6.7 or 43.3% were
resistant when the cefoxitin disk test was used and interpreted
according to the CLSI M100-S25 S. aureus/S. lugdunensis or CoNS
breakpoint, respectively. These findings, which correlated with
our study of human isolates, confirm that cefoxitin is not predic-
tive of mecA-mediated resistance in S. pseudintermedius isolates,
regardless of the isolate source. In response to the data presented
here, the CLSI Antimicrobial Susceptibility Testing Subcommit-
tee voted in June 2015 to add S. pseudintermedius-specific oxacillin
MIC and disk breakpoints to the forthcoming M100-S26 docu-
ment. These new breakpoints for human isolates of S. pseudinter-
medius are the same as those published in the VET01-S2 docu-
ment and will help raise awareness regarding the use of oxacillin
tests to detect mecA-mediated resistance in S. pseudintermedius
among clinical laboratories, in particular as cefoxitin testing has
been recommended and oxacillin testing has been discouraged by
the CLSI for other species of staphylococci. However, the use of
these new oxacillin breakpoints, when they are published, is con-
tingent on the laboratory’s accurate identification of S. pseudin-
termedius when it is isolated from diagnostic specimens. Accurate
identification may be a challenge to laboratories that do not have
MALDI-TOF MS technology for bacterial identification and im-
possible for laboratories that rely solely on a coagulase or S. aureus
latex test for the identification of staphylococci, as both tests yield
positive reactions with SIG isolates. We have found that commer-
cial systems will identify isolates of S. pseudintermedius as S. inter-
medius (L. Westblade, unpublished data). Thus, if these isolates
are encountered, laboratories should perform oxacillin MIC or
disk tests on them to predict the presence of mecA.

Nonetheless, the inclusion of oxacillin disk breakpoints in
M100-S26 is particularly helpful to laboratories in the United
States, as no commercial antimicrobial susceptibility test systems
are cleared by the FDA for S. pseudintermedius. While S. pseudin-
termedius is the only Staphylococcus species for which the oxacillin
disk test would be used, many laboratories use oxacillin DD as a
surrogate test for penicillin susceptibility in isolates of Streptococ-
cus pneumoniae. These laboratories would thus already have the
disk on hand and quality controlled. As an alternative, the com-
mercial antimicrobial susceptibility test systems performed well;

oxacillin MICs interpreted by M100-S25 CoNS breakpoints from
all three instruments demonstrated a �95% CA. These systems
appear to be able to detect mecA-mediated resistance if the CoNS
breakpoints are used, with the exception of the BD Phoenix sys-
tem, where a 10.8% VME rate was noted. Importantly, 0 of the 37
mecA-positive isolates had a positive cefoxitin screening result in
these systems, reinforcing the poor performance of this surrogate
agent for SIG and the potential negative implication of misiden-
tification of SIG as S. aureus. Furthermore, it is worth noting that
we encountered some difficulty extracting oxacillin results from
the commercial platforms. For example, the Phoenix system re-
quired the operator to annotate “unspecified” for an organism’s
identification in order to retrieve oxacillin MIC results, and Vitek
2 required similar manipulation of the platform’s software and/or
setting to obtain results. Laboratories should be aware that while
the results of the present study are encouraging, they are reported
for research use only and would require laboratory verification
prior to use in determining patient care. Therefore, the oxacillin
disk test is an attractive option.

The Alere PBP2a Culture Colony test demonstrated 100%
agreement with the mecA PCR results, if colonies from the edge of
the cefoxitin zone were used for testing. Cefoxitin, rather than
oxacillin, was used as the inducer for mecA expression in our study
on the basis of literature about S. aureus that demonstrates that
cefoxitin is the superior inducer of mecA expression in this species
(35). It is perhaps fortuitous that we chose this approach, since it
allows laboratories that do not stock an oxacillin disk to perform a
PBP2a test for S. pseudintermedius with colonies from the edge of
the cefoxitin disk (which is stocked by nearly all laboratories in the
United States) zone of inhibition.

Throughout this study, we encountered one isolate, of canine
origin, that yielded a consistently elevated oxacillin MIC and small
oxacillin zones but was mecA and mecC negative by PCR. This
isolate had an oxacillin zone diameter of 12 mm, a cefoxitin zone
diameter of 27 mm, and an oxacillin MIC of �16 �g/ml but a
cefoxitin MIC of �4 �g/ml. The oxacillin MICs were similarly
high (1 to �2 �g/ml) by all three commercial systems. The mech-
anism of oxacillin resistance in this isolate remains to be deter-
mined, but it may be due to either hyperexpression of blaZ or
other altered penicillin-binding proteins not detected by our mo-
lecular analysis-based methods. While these alternative mecha-
nisms of low-level oxacillin resistance have been documented in S.
aureus, they have not, to our knowledge, been confirmed in iso-
lates of SIG.

In summary, our data demonstrate that the VET01-S2 oxacil-
lin disk and MIC breakpoints are appropriate for use with S.
pseudintermedius isolates obtained from human clinical speci-
mens. Laboratories should attempt to identify coagulase-positive
staphylococci that appear atypical in morphology (double zone of
hemolysis, white in color) by MALDI-TOF MS or nucleic acid
methods to ensure the appropriate determination and interpreta-
tion of oxacillin MICs and DD zones.

ACKNOWLEDGMENTS

We thank Brandi Limbago and Kamille Rasheed of the Centers for Disease
Control and Prevention and Bradley Ford of the University of Iowa for
providing isolates included in this study. We also thank Paul Magnano,
Anita Sokovic, Karina Hernandez, and Marissa Caravalho for their in-
valuable technical support throughout this study. We thank Alere for
providing the PBP2a tests used in this study and BD, Beckman Coulter,

Staphylococcus pseudintermedius Methicillin Resistance

March 2016 Volume 54 Number 3 jcm.asm.org 541Journal of Clinical Microbiology

http://jcm.asm.org


and bioMérieux for providing antimicrobial susceptibility test panels for
this study.

REFERENCES
1. Cox HU, Hoskins JD, Newman SS, Foil CS, Turnwald GH, Roy AF.

1988. Temporal study of staphylococcal species on healthy dogs. Am J Vet
Res 49:747–751.

2. Cox HU, Hoskins JD, Newman SS, Turnwald GH, Foil CS, Roy AF,
Kearney MT. 1985. Distribution of staphylococcal species on clinically
healthy cats. Am J Vet Res 46:1824 –1828.

3. Rubin JE, Ball KR, Chirino-Trejo M. 2011. Antimicrobial susceptibility
of Staphylococcus aureus and Staphylococcus pseudintermedius isolated
from various animals. Can Vet J 52:153–157.

4. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K.
2007. Methicillin-resistant Staphylococcus pseudintermedius in a veteri-
nary teaching hospital. J Clin Microbiol 45:1118 –1125. http://dx.doi.org
/10.1128/JCM.02193-06.

5. Rubin JE, Gaunt MC. 2011. Urinary tract infection caused by methicillin-
resistant Staphylococcus pseudintermedius in a dog. Can Vet J 52:162–164.

6. Nienhoff U, Kadlec K, Chaberny IF, Verspohl J, Gerlach GF, Schwarz
S, Kreienbrock L, Nolte I, Simon D. 2011. Methicillin-resistant Staphy-
lococcus pseudintermedius among cats admitted to a veterinary teaching
hospital. Vet Microbiol 153:414 – 416. http://dx.doi.org/10.1016/j.vetmic
.2011.05.045.

7. Weese JS, Faires MC, Frank LA, Reynolds LM, Battisti A. 2012. Factors
associated with methicillin-resistant versus methicillin-susceptible Staph-
ylococcus pseudintermedius infection in dogs. J Am Vet Med Assoc 240:
1450 –1455. http://dx.doi.org/10.2460/javma.240.12.1450.

8. Beck KM, Waisglass SE, Dick HL, Weese JS. 2012. Prevalence of meti-
cillin-resistant Staphylococcus pseudintermedius (MRSP) from skin and
carriage sites of dogs after treatment of their meticillin-resistant or meti-
cillin-sensitive staphylococcal pyoderma. Vet Dermatol 23:369 –375,
e366 – e367. http://dx.doi.org/10.1111/j.1365-3164.2012.01035.x.

9. Sasaki T, Tsubakishita S, Tanaka Y, Sakusabe A, Ohtsuka M, Hirotaki
S, Kawakami T, Fukata T, Hiramatsu K. 2010. Multiplex-PCR method
for species identification of coagulase-positive staphylococci. J Clin Mi-
crobiol 48:765–769. http://dx.doi.org/10.1128/JCM.01232-09.

10. Devriese LA, Vancanneyt M, Baele M, Vaneechoutte M, De Graef E,
Snauwaert C, Cleenwerck I, Dawyndt P, Swings J, Decostere A, Hae-
sebrouck F. 2005. Staphylococcus pseudintermedius sp. nov., a coagulase-
positive species from animals. Int J Syst Evol Microbiol 55:1569 –1573.
http://dx.doi.org/10.1099/ijs.0.63413-0.

11. Silva MB, Ferreira FA, Garcia LN, Silva-Carvalho MC, Botelho LA,
Figueiredo AM, Vieira-da-Motta O. 2015. An evaluation of matrix-
assisted laser desorption ionization time-of-flight mass spectrometry
for the identification of Staphylococcus pseudintermedius isolates from
canine infections. J Vet Diagn Invest 27:231. http://dx.doi.org/10.1177
/1040638715573297.

12. Chrobak D, Kizerwetter-Swida M, Rzewuska M, Binek M. 2011. Anti-
biotic resistance of canine Staphylococcus intermedius group (SIG)—
practical implications. Pol J Vet Sci 14:213–218.

13. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K.
2007. Reclassification of phenotypically identified Staphylococcus interme-
dius strains. J Clin Microbiol 45:2770 –2778. http://dx.doi.org/10.1128
/JCM.00360-07.

14. Starlander G, Börjesson S, Gronlund-Andersson U, Tellgren-Roth C,
Melhus A. 2014. Cluster of infections caused by methicillin-resistant
Staphylococcus pseudintermedius in humans in a tertiary hospital. J Clin
Microbiol 52:3118 –3120. http://dx.doi.org/10.1128/JCM.00703-14.

15. Riegel P, Jesel-Morel L, Laventie B, Boisset S, Vandenesch F, Prevost G.
2011. Coagulase-positive Staphylococcus pseudintermedius from animals
causing human endocarditis. Int J Med Microbiol 301:237–239. http://dx
.doi.org/10.1016/j.ijmm.2010.09.001.

16. Stegmann R, Burnens A, Maranta CA, Perreten V. 2010. Human infec-
tion associated with methicillin-resistant Staphylococcus pseudintermedius
ST71. J Antimicrob Chemother 65:2047–2048. http://dx.doi.org/10.1093
/jac/dkq241.

17. Van Hoovels L, Vankeerberghen A, Boel A, Van Vaerenbergh K, De
Beenhouwer H. 2006. First case of Staphylococcus pseudintermedius infec-
tion in a human. J Clin Microbiol 44:4609 – 4612. http://dx.doi.org/10
.1128/JCM.01308-06.

18. Börjesson S, Gomez-Sanz E, Ekstrom K, Torres C, Gronlund U. 2015.

Staphylococcus pseudintermedius can be misdiagnosed as Staphylococcus
aureus in humans with dog bite wounds. Eur J Clin Microbiol Infect Dis
34:839 – 844. http://dx.doi.org/10.1007/s10096-014-2300-y.

19. Pottumarthy S, Schapiro JM, Prentice JL, Houze YB, Swanzy SR, Fang
FC, Cookson BT. 2004. Clinical isolates of Staphylococcus intermedius
masquerading as methicillin-resistant Staphylococcus aureus. J Clin Mi-
crobiol 42:5881–5884. http://dx.doi.org/10.1128/JCM.42.12.5881-5884
.2004.

20. van Duijkeren E, Box AT, Heck ME, Wannet WJ, Fluit AC. 2004.
Methicillin-resistant staphylococci isolated from animals. Vet Microbiol
103:91–97. http://dx.doi.org/10.1016/j.vetmic.2004.07.014.

21. Gortel K, Campbell KL, Kakoma I, Whittem T, Schaeffer DJ, Weisiger
RM. 1999. Methicillin resistance among staphylococci isolated from dogs.
Am J Vet Res 60:1526 –1530.

22. Bemis DA, Jones RD, Frank LA, Kania SA. 2009. Evaluation of suscep-
tibility test breakpoints used to predict mecA-mediated resistance in
Staphylococcus pseudintermedius isolated from dogs. J Vet Diagn Invest
21:53–58. http://dx.doi.org/10.1177/104063870902100108.

23. Frank LA, Loeffler A. 2012. Meticillin-resistant Staphylococcus pseudin-
termedius: clinical challenge and treatment options. Vet Dermatol 23:283–
291. http://dx.doi.org/10.1111/j.1365-3164.2012.01047.x.

24. Schissler JR, Hillier A, Daniels JB, Cole LK, Gebreyes WA. 2009.
Evaluation of Clinical and Laboratory Standards Institute interpretive cri-
teria for methicillin-resistant Staphylococcus pseudintermedius isolated
from dogs. J Vet Diagn Invest 21:684 – 688. http://dx.doi.org/10.1177
/104063870902100514.

25. CLSI. 2013. Performance standards for antimicrobial disk and dilution
susceptibility tests for bacteria isolated from animals VET01-S2. Second
information supplement. Clinical and Laboratory Standards Institute,
Wayne, PA.

26. EUCAST. 2015. Staphylococcus pseudintermedius cefoxitin 30 �g as screen
for methicillin resistance, version 1.1. European Committee on Antimi-
crobial Susceptibility Testing, Basel, Switzerland.

27. CLSI. 2015. Performance standards for antimicrobial susceptibility test-
ing, 25th informational supplement. M100-S25. Clinical and Laboratory
Standards Institute, Wayne, PA.

28. Boye K, Bartels MD, Andersen IS, Moller JA, Westh H. 2007. A new
multiplex PCR for easy screening of methicillin-resistant Staphylococcus
aureus SCCmec types I-V. Clin Microbiol Infect 13:725–727. http://dx.doi
.org/10.1111/j.1469-0691.2007.01720.x.

29. El Feghaly RE, Stamm JE, Fritz SA, Burnham CA. 2012. Presence of
the bla(Z) beta-lactamase gene in isolates of Staphylococcus aureus that
appear penicillin susceptible by conventional phenotypic methods. Di-
agn Microbiol Infect Dis 74:388 –393. http://dx.doi.org/10.1016/j
.diagmicrobio.2012.07.013.

30. Frye SHM. 2006. Molecular strain typing using repetitive sequence-based
PCR, p 540. In Tang Y-W, Stratton CW (ed), Advanced techniques in
diagnostic microbiology. Springer. New York, NY.

31. Clark RB LM, Loeffelholz MJ, Thibbetts RJ. 2009. Cumitech 31A, Ver-
ification and validation of procedures in the clinical microbiology labora-
tory. ASM Press, Washington, DC.

32. Johnson KN, Andreacchio K, Edelstein PH. 2014. Detection of methi-
cillin-resistant coagulase-negative staphylococci by the Vitek 2 system. J
Clin Microbiol 52:3196 –3199. http://dx.doi.org/10.1128/JCM.01162-14.

33. Swenson JM, Tenover FC. 2005. Results of disk diffusion testing with
cefoxitin correlate with presence of mecA in Staphylococcus spp. J Clin
Microbiol 43:3818 –3823. http://dx.doi.org/10.1128/JCM.43.8.3818-3823
.2005.

34. da Costa Darini AL, Palazzo IC. 2004. Cefoxitin does not induce pro-
duction of penicillin binding protein 2a in methicillin-susceptible Staph-
ylococcus aureus strains. J Clin Microbiol 42:4412; author reply, 4412–
4413. http://dx.doi.org/10.1128/JCM.42.9.4412-4413.2004.

35. Boutiba-Ben Boubaker I, Ben Abbes R, Ben Abdallah H, Mamlouk K,
Mahjoubi F, Kammoun A, Hammami A, Ben Redjeb S. 2004. Evalua-
tion of a cefoxitin disk diffusion test for the routine detection of methicil-
lin-resistant Staphylococcus aureus. Clin Microbiol Infect 10:762–765.
http://dx.doi.org/10.1111/j.1469-0691.2004.00919.x.

36. Stegger M, Andersen PS, Kearns A, Pichon B, Holmes MA, Edwards G,
Laurent F, Teale C, Skov R, Larsen AR. 2012. Rapid detection, differ-
entiation and typing of methicillin-resistant Staphylococcus aureus har-
bouring either mecA or the new mecA homologue mecA(LGA251). Clin
Microbiol Infect 18:395– 400. http://dx.doi.org/10.1111/j.1469-0691.2011
.03715.x.

Wu et al.

542 jcm.asm.org March 2016 Volume 54 Number 3Journal of Clinical Microbiology

http://dx.doi.org/10.1128/JCM.02193-06
http://dx.doi.org/10.1128/JCM.02193-06
http://dx.doi.org/10.1016/j.vetmic.2011.05.045
http://dx.doi.org/10.1016/j.vetmic.2011.05.045
http://dx.doi.org/10.2460/javma.240.12.1450
http://dx.doi.org/10.1111/j.1365-3164.2012.01035.x
http://dx.doi.org/10.1128/JCM.01232-09
http://dx.doi.org/10.1099/ijs.0.63413-0
http://dx.doi.org/10.1177/1040638715573297
http://dx.doi.org/10.1177/1040638715573297
http://dx.doi.org/10.1128/JCM.00360-07
http://dx.doi.org/10.1128/JCM.00360-07
http://dx.doi.org/10.1128/JCM.00703-14
http://dx.doi.org/10.1016/j.ijmm.2010.09.001
http://dx.doi.org/10.1016/j.ijmm.2010.09.001
http://dx.doi.org/10.1093/jac/dkq241
http://dx.doi.org/10.1093/jac/dkq241
http://dx.doi.org/10.1128/JCM.01308-06
http://dx.doi.org/10.1128/JCM.01308-06
http://dx.doi.org/10.1007/s10096-014-2300-y
http://dx.doi.org/10.1128/JCM.42.12.5881-5884.2004
http://dx.doi.org/10.1128/JCM.42.12.5881-5884.2004
http://dx.doi.org/10.1016/j.vetmic.2004.07.014
http://dx.doi.org/10.1177/104063870902100108
http://dx.doi.org/10.1111/j.1365-3164.2012.01047.x
http://dx.doi.org/10.1177/104063870902100514
http://dx.doi.org/10.1177/104063870902100514
http://dx.doi.org/10.1111/j.1469-0691.2007.01720.x
http://dx.doi.org/10.1111/j.1469-0691.2007.01720.x
http://dx.doi.org/10.1016/j.diagmicrobio.2012.07.013
http://dx.doi.org/10.1016/j.diagmicrobio.2012.07.013
http://dx.doi.org/10.1128/JCM.01162-14
http://dx.doi.org/10.1128/JCM.43.8.3818-3823.2005
http://dx.doi.org/10.1128/JCM.43.8.3818-3823.2005
http://dx.doi.org/10.1128/JCM.42.9.4412-4413.2004
http://dx.doi.org/10.1111/j.1469-0691.2004.00919.x
http://dx.doi.org/10.1111/j.1469-0691.2011.03715.x
http://dx.doi.org/10.1111/j.1469-0691.2011.03715.x
http://jcm.asm.org

	MATERIALS AND METHODS
	Bacterial isolates.
	Antimicrobial susceptibility testing.
	mecA and mecC detection, SCCmec typing, and repetitive-sequence PCR.
	PBP2a test.
	Data analysis.
	Discrepant-result resolution.

	RESULTS
	Molecular studies.
	Cefoxitin and oxacillin DD and BMD.
	Performance comparison of automated susceptibility test systems.
	PBP2a test.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

